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Abstract: The operation of lakes and reservoirs is currently under scrutiny in Finland due to the aging of the
old operation permits, climate change, and changing environmental values. Simulation is a viable tool for
studying reservoir operation but difficult to use when the operation does not have clear explicit rules. Fuzzy
logic has been shown to be useful in modeling simple decision making which requires intelligence. Two fuzzy
logic based methods, namely case-based and rule-based reasoning were examined and applied for modeling
the operation of five lakes of a river basin. Different mathematical structures and interpretations were tested
including the use of fuzzy similarity based approaches. The best results were obtained using a rule based ap-
proach with a simpie mathematical structure and interpretation of the fuzzy and as a product. The rule base in
the model was allowed to be inconsistent and each rule had an associated weight or strength. The case-based
approach performed rather well in comparison with the rule-based approach and in some cases better in some
respect. Both modeis can mimic the human operator reasonably well in easy circumstances but have problems
especiatly in the downstream lakes with large discharge to storage ratios. The fuzzy legic based models, case-
based reasoning or rule-based reasoning require further work to be applicable in studying practical problems
like the adjusting the operation to changes in environmental values and climate.
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. INTRODUCTION goal of the modeling at this stage is to mimic the
human operator. We have tested several tech-
nigues and mathematical formulations including the

total fuzzy similarity of Turunen [1999],

The actual operation of many Finnish lakes is often
a compromise between the goals of the operator
and the rules set out in an operation permit. Often
neither the operator's own rules nor the operation
permit state explicitly what the release should be in
a given situation. The operation is thus very much
based on the experience and skill of the managers.
This forms an cbstacle for mo deling and simulation

Several approaches to apply fuzzy set theory to
reservoir operation have been described jn the li-
erature. These include fuzzy optimization tech-
niques, fuzzy rule base systems, and combinations
of fuzzy approach with other technigues, Applica-

of the operation of the lzke.

Curreptly many operation permils are being -
vised, A strong metivation for the revision are the
changing environmental values and changing uses
of water resources. A thorough analysis of the
operation and its impact requires simulation under
existing and predicted conditions.

This paper describes an attempt to model the op-
eration of a system of five lakes using a fuzzy logic
based approach. The atterpt is based on general
knowledge and on water level and release data. The

tions can be found in the work of Fontane et al.
[1997], Huang [1996], and Saad et al. [1996]. Fuzzy
rule base control systems for reservoir operation
are presented by Russell and Campbell [1996] and
Shrestra et al. [1996]. The fuzzy rule base can be
constructed on the basis of expert knowledge or
observed data. Methods for deriving a tule base
from observations have been presented by Bar
dossy and Duckstein [1995] and Kosko 1992],
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2, FUZZY REASOMING OF RESERVOIR
RELEASE

2,1 Introduction

In reserveir operation the operator determines a
suitable release based on observation data and
other conditions. To describe the values of various
variables a reserveir operator typically employs
linguistic valugs. The basic assumption in fuzzy
modeling is that all linguistic values can be mod-
eled as fuzzy sets. Fuzzy sets are defined by mem-
bership functions, which map crisp values to de-
gree of membership (DOM) {to the fuzzy set) val-
ucs. The linguistic values should cover the whole
range of possible values a variable may have. For
example the variable "water level" may have three
linguistic values: "low", "nmormal", and “high".
Each crisp water level value can ther be expressed
as a vector of three DOM values in this case.

There is not one universal interpretation for logical
operators (and, or, not, implication, and equi-
valence) as mathematical operations between DOM
values m fuzzy logic. Each interpretation defines a
different formula for the tnorm &), which is an
interpretation of the logical connactive and and
from which interpretations for other operators can
be derived. Several interpretations are given in Bar
dossy and Duckstein [1995] and in Turunen [1999].

2.2 Casebased Reasoning of Release

A direct method for making a decision is to look at
the historical data for simiiar cases and make a simi-
lar decision that was made in those cases. Fuzzy
similarity is defined by the equivalence relation
between two DOM values. To derive the total fuzzy
similarity between two observation vectors having
one or more varizbles one must combine compo-
nent similarities. The combination has to be done in
two steps, first by sach linguistic value and then
by variables. Interestingly, the combination of sirri-
larity 15 mathematically defined only for Lu-
casiewicz (bounded difference-sum) valued simifar-
ity. The total fuzzy similarity i3 an average of the
component similarity measures [Turunen, 19951,

The similarity between the observation vectors is
then assumed to equal the similarity between the
decisions. Thus the decision derived by case-
based reasoning is 8 weighted average of releasss
in observation vectors in the historical data similar
to the observation wvector of the time of the
decisicnmaking. The weights are the similaritics
between the observation vectors.

2.3 Learning Fuzzy Rules from the Data

A fuzzy tule is an implication a—b, "if a then &"
where ¢ and b are sets of fuzzy sets combined us-
ing logical operators. Each historical case is a piece
of evidence in favor of one or more tules, ic., it
strengthens the weights of those rules. Before any
tearning has occured every rule has zero weight. By
using fuzzy rules we are separating the reasoning
into two phases: learning and application of the
rule set. The information, or knowledge, available in
the historical data is stored into a more condensed
format into the rule set.

Using the generalized modus ponens we can calcu-
late the truth value for any rule given a historical
case. The generalized modus ponens is 2 rule for
fuzzy reasoning and it states that, if we know the
truth vahues of # and a—b, then we ean calculate
the truth value of b as v(e)®v(ag—b), v{a) is the
truth value of the proposition a. It is easy to solve
from this v{g—b) once we have selected the
mathematical interpretation for the logical opem-
tors,

It ig also possible to use the similarity approach in
the determination of the support a case gives fo a
rule. The simifarity is then calculated between the
observation matrix of DOM values and a (0,13-
valued DOM matrix which defines each if-part of 2
rale. For example the if-part "water level is low" is
written as a DOM valued vector (1,0,0).

it should be noted that each case in the historical
data may support several rules, Also there will be
rules, which are inconsistent with each other in the
sense that one if-part may imply two or more differ-
ent decisions. This is a consequence of having a
strength associated with each rule.

There will inevitably be a situation where one case
gives a strength s, to a rule and another gives a
strength m, to the same rule. Interestingly, this
problem is tackled in the Dempster-Shafer theory of
evidence as a reduction of two parallel rules using
the formula 1 -~ (1 - m,)(1- m,}, which happens to be
the Gaines-valued (algebraic product-sum) interpre-
tation of fuzzy or. Or'ing subsequent strengths has
the, unwanted in this case, property of locking inio
vatue one if at least one strength {s one. Other pos-
sibilities for combining the evidences is to use the
average or logical and.

2.4 Heasoning s Release Decision Based on a
Fuzzy Rule Set

The truth value of each if-past in the Tule set can he
calculated from the observation vector. Alterna-
tively, the similarity of the observation vector with
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each if-part can be calculated as described above.
This together with the strengths of the rules can be
directly fed into the generalized rodus ponens to
derive DOM values for the release decision. Muiti-
ple values associated with the same linguistic value
are combined using the logical or

In the last step the thus obtained DOM vector has
to be mapped to a crisp decision, i.e., de-fuzzified.
We have used here two de-fuzzification metheds.
In the first the largest ¢lement in the vector is se-
lected and the membership function of the respec-
tive linguistic value is used, If this membership
function is triangular, i.e, there are two crisp values
for each DOM valuce, the values of the elements in
the vector to the right and to the left of the fargest
element are surnmed, and depending on those sums
gither the smaller or the larger crisp value is se-
lected. The other technique is to maximize the total
fuzzy similarity between a crisp decision and the
DOM value vector. The maximization requires
knowledge about the form of the membership func-
tions.

3. MODELED LAKE 5YETEM

The Kokemdenjoki river basin (figure 1.) is situated
in South-Western Finland. There are thousands of
lakes in the basin but most of them small. The lakas
are connected with rivers and rapids, many of the
iarger ones have dams or hydro power plants and
the watercourse is thus mostly regulated. The ba-
sin is the fourth largest in Finland having an area of
27 046 km2, out of which 11 % is lakes. There are
two large cities, Tampere (195 000 inh.) and
Himeenlinna (46 000 inh.) and several smaller corr-
munities on the basin. The total ponulation on the
basin is upwards of /2 million.

Vangiaves) ~ .
Mailasvesi

Figure 1. Location of the river basin in Finland and
the lakes in the basin.

For this study a system of five large and operated
lakes, with the exception of Mallasvesi, which is
currently not operated, were selected. The lakes
represent most of the regulated part of the basin
and are Keurnsselkd (118 km?), Nisijirvi (262 k)
Mallasvesi (52 knr'), Vanaiavesi {151 kmr'), and Py-
hijarvi (124 kmz). A schematic of the system is
shown in figure 2. The sizes of the triangles in the
figure are proportional to the areas of the Iakes,
The numbers on the flow arrows are the average
discharges fromthe lakes (data is from years 1960-
1990, unit is m'/s).

4. FUZZY OPERATION MODEL FOR THE
LAKES

The development and testing of the models was
very much an interactive and a trial and error exer-
cise. Data from years 1970-1989 was used as his-
torical cases and for training and data from vyears
19901999 was used for validation.

fasiidr Vanaja -
vesi

Figure 2, A schematic diagram of the five lakes in
the modeled system.

The time step of the simulation was set to twe
weeks. This is long enough for the effect of the
travel time of water to be negligible and short
enough to take into account the dynamics of the
operation. The fuzzy reasoning was used to gener-
ate a release proposal, which was then checked by
the simulator and changed if minimum or maximum
water levels would have been violated, The release
was not allowed to be negative.
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Two statistics and visual inspection of the opera-
tion of the model were employed in the modeling.
The two statistics were the average squared differ-
ence between the observed and the model output
and the number of times the simulator had to
change the release proposed by the fuzzy model.

The season, observed storage, observed inflow
during the previcus time step, inflow forecast, and
observed release during the previous time step and
some derivative variables, e.g., change in inflow,
were tested as input variables. It was deemed valid
to use the inflow foreeast because in reality one is
available (although not a perfect one) and release
decisions can be made more often than svery two
weeks, The effect of the number of linguistic values
was tested. The parameters of the membership
functions were calculated from the training data,
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Figure 3. The parameters of the membership func-
tions for storage of Keuvrusseiki.

The whole structure of the mode! was subject to
change and the theoretical considerations dis-
cussed previously were used only as suggestions.
Different t-norms were tested.
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Figure 4. An example of fuzzy set membership
functions for three linguistic values for storage of
Keurusselkd {season is 11, compare to fig. 3).

Figures 3 and 4 depict an example of seasonal
variation of the parameters of the membership func-
tions and the triangular shape of the functions. The
parameters were obtained from the training data.

5. RESULTS
5.1 General

Figures 5, 6 and 7 show visually the quality of the
operation of the models. All figures visualize the
independent operation of the models in the valida-
tion pericd, i.c., the actual data from the validation
period, although shown in the figures, was not
used in any way by the models. All figures also
show season-dependent minimum and maxmum
storage values as calculated from the data from the
training period.

Generally the results were satisfactory for this
phase of the modeling. The rule-based approach
worked siightly better except for the casc of the
two upstream izkes, where the case-based ap-
proach worked better if judged by the squared error
statistic alone. The case-based approach suffered
from jerkiness of the operation, which was propa-
gated downstream and amplified. The rclease sug-
gestion of the best rule-based model had to be dis-
approved by the simulator 41 times out of 100 in
the case of the most downstream lake Pyhdjirvi,
and 4-9 times out of 100 in the case of the other
lakes in general in the validation period.

52 Membership Functions

Three linguistic values to represent the whole
range of possible values of all variables was found
to be enocugh. Manual smoothing of the season-
dependent parameters of the membership functions
did not seem to have much effect in the operation
of the models and the values obtained directly from
the data were used.

52 [Input Variables

The best combination of input variables was found
to be storage and inflow forecast, Combinations
with more input values produced better results in
the training period but failed to reproduce the good
performance in the validation period, a2 sign of
over-learning. Also the combination of storage
with previous inflow peformed better in the training
period but not as well in the validation period.
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5.4 Effect of the Structure of the Model

The selection of the tnorm had almost as much
importance as the selection of the input variables.
in general the often used Gaines interpretation (a2}
gebraic product-sum) seemed to worlk the best. The
theoreticaily correct structure did not in general
work very weil, most notably it was found out that
the interpretation of the rule as ap implication and
subsequent evaluation of its truth value using mo-
dus ponens was not useful, Simply stating that
v{a~»h) = v(a)@v(b) and using the product inter-
pretation for ® worked the best. The Lukasiewicz
interpretation did not produce good results but a
more theoretically correct approach produced bet-
ter results when it was used as opposed to other
interpretations. The Lukasiewicz interpretation
caused the model to fail to produce a release pro-

posal in many occasions, this is due to the fact that
the sum of two truth values has to be more than
one in order for the Lukasiwicz t-norm to be greater
than zero.

55 Similarity Approach

The similarity appreach did not improve the results
in the de-fuzzification but produced almost as good
results as the method based on the largest DOM
value. The case was similar when the similarity of
the input and the if-parts of the rules was used
instead of truth values. In the case-based reason-
ing it was found out that better results were ob-
tained if only cases from the same season were
usad. The Gédel interpretation (maximum} pro-
duced the best results.
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Figure 5. Storage trajectory of Keurusselk in a part of the validation period by the fuzzy rule-based control-
ler and observed data.
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Figure 6. Storage trajectory of Mallasvesi in a part of the validation period by the fuzzy rule-based controller,
case-based reasoning, and observed data.
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Figure 7. Storage trajectory of Pyhijarvi in a part of the validation period by the fuzzy rule-based controller
and observed data.

6. DISCUSSION

The fuzzy mede! succeeds generally rather well in
operating the lakes and mimicing the human cpera-
tor, except in the case of Pyhdjirvi, The problem
with Pyhijirvi is its relatively large throughflow
compared to the active storage. The difference in
the simulated and observed storage of Mallasvesi
in the case of the rule-based nodel i difficult to
explain. Mallasvesi is not operated and thus its
outflow is 3 function of its water level, However,
the outflow during a time period of two weeks can-
not be calculated from the initial storage and the
total inflow during the period.

During the winter 1995-1996 the inflows were a¢
ceptionally low and this caused the controfler to
fait in the operation of Nasijarvi during that period.
Similar failure is not visible in other lakes. The
mocel seems to keep the water level of Keurusselks
higher during low flow periods, This could indicate
a change in the operating policy between the leam-
ing period and validation period.

The membership functions were derived from the
data and thus represent only indirectly the objec-
tives of the operators. In reality the membership
functions would be the central issue in the discus-
sion about the regulation of the lake, The average
water level can be interpreted as the target value
and the minimum and maximum as the physi-
cal/legal constraints to the regulation, It should be
studied if the membership functions could be used
in adjusting the model] for different conditions.

One of the benefits of the fuzzy model is that the
model attempis to keep the lake water level at the
average, or target, value only implicitly and not
“from the fear of being punished”. This can be
viewed as more natural than how optimization
models behave. The optimization medels are often
built to try to keep the water level or discharge on
the target by imposing a cost for deviating from it

7. CONCLUSIOM

From the results it can be concluded that the fuzzy
approach 18 in general suitable for simulating reser-
voir operation. The developed fuzzy model was,
however, in some cases rather sensitive for
changes in conditions and susceptible to failure
when working outside the teaching data. The ap-
plicability of the model for practical studies of op-
eration of these lakes will need further work.
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